Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Lang (Camb) ; 5(1): 248-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645620

RESUMO

Language models (LMs) continue to reveal non-trivial relations to human language performance and the underlying neurophysiology. Recent research has characterized how word embeddings from an LM can be used to generate integrated discourse representations in order to perform inference on events. The current research investigates how such event knowledge may be coded in distinct manners in different classes of LMs and how this maps onto different forms of human inference processing. To do so, we investigate inference on events using two well-documented human experimental protocols from Metusalem et al. (2012) and McKoon and Ratcliff (1986), compared with two protocols for simpler semantic processing. Interestingly, this reveals a dissociation in the relation between local semantics versus event-inference depending on the LM. In a series of experiments, we observed that for the static LMs (word2vec/GloVe), there was a clear dissociation in the relation between semantics and inference for the two inference tasks. In contrast, for the contextual LMs (BERT/RoBERTa), we observed a correlation between semantic and inference processing for both inference tasks. The experimental results suggest that inference as measured by Metusalem and McKoon rely on dissociable processes. While the static models are able to perform Metusalem inference, only the contextual models succeed in McKoon inference. Interestingly, these dissociable processes may be linked to well-characterized automatic versus strategic inference processes in the psychological literature. This allows us to make predictions about dissociable neurophysiological markers that should be found during human inference processing with these tasks.

2.
Neurobiol Lang (Camb) ; 2(1): 83-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37213417

RESUMO

During discourse comprehension, information from prior processing is integrated and appears to be immediately accessible. This was remarkably demonstrated by an N400 for "salted" and not "in love" in response to "The peanut was salted/in love." Discourse overrule was induced by prior discourse featuring the peanut as an animate agent. Immediate discourse overrule requires a model that integrates information at two timescales. One is over the lifetime and includes event knowledge and word semantics. The second is over the discourse in an event context. We propose a model where both are accounted for by temporal-to-spatial integration of experience into distributed spatial representations, providing immediate access to experience accumulated over different timescales. For lexical semantics, this is modeled by a word embedding system trained by sequential exposure to the entire Wikipedia corpus. For discourse, this is modeled by a recurrent reservoir network trained to generate a discourse vector for input sequences of words. The N400 is modeled as the difference between the instantaneous discourse vector and the target word. We predict this model can account for semantic immediacy and discourse overrule. The model simulates lexical priming and discourse overrule in the "Peanut in love" discourse, and it demonstrates that an unexpected word elicits reduced N400 if it is generally related to the event described in prior discourse, and that this effect disappears when the discourse context is removed. This neurocomputational model is the first to simulate immediacy and overrule in discourse-modulated N400, and contributes to characterization of online integration processes in discourse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...